#### **S&C FY02 ANNUAL REVIEW MEETING**

# Portable Parallel Beam X-Ray Diffraction System For In-Line Process Control in the Steel Industry

**Thomas Bievenue: Principal Investigator** 

**David Gibson: President of XOS** 

# **Project Description**

 Design, build and test a compact in-line X-ray diffraction system to perform identification and quantification of Zeta phase formation in a galvannealing line.

# Project Objectives/Goal

- A robust sensor to monitor and control zeta phase in-line for the steel galvannealing process.
- A capability which can be used for crystalline measurement in-line in a broad range of applications and industries.

# Innovation/Technical Risks

#### Innovation

- Parallel Beam Geometry via x-ray optics
- Non-scanning technique

#### Technical risks

- Alignment of source, sample, optic, and detector
- Reliability and reproducibility

# Bragg-Brentano Geometry





Use of parallel-beam approach eliminates problem with sample displacement which previously caused intensity variation and peak shift.

# Galvanneal Spectrum



The Black and Green Curves have been shifted by 100 counts for clarity. The Red curve is the baseline

# Task Performance

#### **Past Technical Milestones**

| Milestone                  | Due<br>Date | Completion Date | Comments                         |
|----------------------------|-------------|-----------------|----------------------------------|
| Proof of concept           | 7/00        | 7/00            | Parallel<br>Beam<br>Geometry     |
| Sensor component selection | 12/01       | 12/01           | X-ray sources, optics, detectors |
| Bench Top Testing          | 2/02        | 2/02            |                                  |

# Progress Toward Performance Goals

#### Form Factor

- Low power x-ray source
- Parallel-beam x-ray optic
- Two-position detection system
- Housed in NEMA style box on production line
- Electronics housed in NEMA style box near production line

# Sensor Engine Cross Section





Compact, no moving parts, sealed from the environment

# **Galvanneal Sensor Electronics**



Galvanneal Sensor Electronics will be installed near the production line

# Comparison of two systems

- System miniaturization and simplification
- Greatly expand the applicability of x-ray analytical techniques.



#### X-ray sources without optics





#### X-ray sources with integrated optics



# Path Forward

#### **Future Technical Milestones**

| Milestone                         | Due<br>Date | Comments           |
|-----------------------------------|-------------|--------------------|
| Assemble Sensor                   | 7/31        |                    |
| Bench test sensor at XOS facility | 8/15        | Verify performance |
| Install sensor at AK Steel        | 9/1-9/30    | On slitting line   |
| Collect data at AK Steel          | 10/15       |                    |
| Final Phase II Report             | 12/30       |                    |

# The XRD System will improve productivity of the galvannealing process:

- Reduction of out-of-spec product:
  - Reduction of yield loss (1%)
  - Savings of 50,000 N.T. (U.S)
- Minimization of fine-tuning period when switching from product to product or galvanizing to galvannealing:
  - Cut fine-tuning time in half
  - Savings of 42,000 N.T. (U.S.)

# The XRD System will improve product quality by allowing continual monitoring of zeta phase:

- Control that product meets spec.
- Documentation: Is the galvannealed steel really causing the problem at the automaker?
  - => Improved stamping processes at the automakers.
- Sub-standard product will not be used in cars.

#### The XRD system will reduce costs by reducing:

- Energy costs associated with out-of-spec product.
- Lost revenue from out-of-spec product, due to:
  - Process variation.
  - Fine-tuning during changeover.

#### **Cost Savings (\$ millions)**

|       | Quality | Fine-Tuning | Energy | Total |
|-------|---------|-------------|--------|-------|
| USA   | \$24    | \$17        | \$1    | \$ 42 |
| World | \$86    | \$61        | \$4    | \$151 |

- The XRD System will reduce the energy that is wasted by the production of out-of-spec product:
  - Galvannealing is the second-most energy-intensive process in steelmaking, second only to ironmaking.
  - Out-of-spec product is sold for applications which would not require the high-energy input.

#### U.S. and World Energy Savings

|       | <u> </u>              |                             |                           |  |
|-------|-----------------------|-----------------------------|---------------------------|--|
|       | Production (000 N.T.) | Yield Savings<br>(000 N.T.) | Energy<br>Savings (\$000) |  |
| USA   | 5,000                 | 50                          | \$1,030                   |  |
| World | 18,000                | 180                         | \$3,709                   |  |

# Other Applications for Online XRD

#### Steel:

Online XRD could provide important monitoring and control for many important process parameters/ specifications in the steel manufacturing process:

- Mechanical properties of semi-finished and finished steel products. (phase, texture, and stress)
- Coating quality of galvannealed, galvanized, and electrogalvanized product. (phase)
- Surface contamination, oxides, and corrosion. (phase)
- Mineral analysis of raw scraps. (phase)

# Other Applications for Online XRD

#### **Other Industries:**

Online XRD could provide important monitoring and control for many important process parameters/ specifications in other industries:

#### **Aluminum**

- Alloy phase
- Texture
- Stress

#### Cement

- Component phase
- Free-lime content
- Particle size

#### Pharmaceutical- active ingredient

- Quantity
- Correct polymorph

#### Semiconductor-thin film

- Stress
- Texture
- Crystal orientation

# Questions?